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Partition Function for an Electron in a Random Potential 

Eugene P. Gross 1 

Received May 2, 1977 

We compute the average partition function for an electron moving in a 
Gaussian random potential. A path integral formulation is used, with a 
trial action like that in Feynman's polaron theory. We compute the vari- 
ational bound as well as the first correction in a systematic cumulant 
expansion. The results are checked against exact formulas for the one- 
dimensional white noise problem. The density of states in the low-energy 
tail has the correct exponential energy dependence, and energy-dependent 
prefactor to within a few percent. In addition, the partition function goes 
over smoothly to the perturbation theory result at high temperatures. 

KEY W O R D S  : Random potent ia l  ; density of states ; part i t ion funct ion. 

1. I N T R O D U C T I O N  

We consider an electron moving in a potential V(r), which is a r andom field 
obeying Gaussian statistics. We are interested in comput ing the partit ion 
funct ion averaged over the r andom field configurations. The density o f  states 
may be found as the inverse Laplace t ransform of  the parti t ion function. 

This problem was studied by Frisch and Lloyd ~3~ and Halperin, (2~ who 
exhibited the exact solution for the density o f  states for white noise in ,one 
dimension. The general physical features o f  the three-dimensional case, with 
particular attention to the low-energy tail in the density of  states, were 
elucidated by Halperin and Lax (81 and Zit tarz and Langer. ~4~ For  general 
reviews consult Refs. 5-7. 

In  the present paper  we use the path integral representation o f  the 
part i t ion function and make a calculation very similar to Feynman 's  theory 
of  the po la ronJ  8~ For  that  problem, Feynman obtained an excellent approxi- 
mat ion to the ground-state energy and effective mass over the entire range 
o f  coupling constants. He used a two-time quadratic trial action. For  the 
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present problem we compute the partition function as a smoothly varying 
quantity over the entire temperature range. The electron in a random 
potential is a simpler system than the polaron. As a result we obtain very 
explicit results in the Feynman approximation. In addition, we study the 
structure of a systematic theory based on a cumulant expansion which starts 
with the Feynman approximation as the first step. A theory of this type for a 
more difficult random impurity problem was explored by Friedberg and 
Luttinger. (9~ They used a single time trial action and studied the low-energy 
tail in the density of states. 

To see the main features of the problem at low temperatures most 
directly, one can employ a delightful variational principle invented by 
Luttinger. (1~ This principle does not aim for great accuracy, but permits a 
quick overview of a large number of problems. Luttinger shows that for an 
electron with a Hamiltonian 

H = �89 + V(r) (1) 

the canonical partition function has the lower bound 

Z = tr(e - ~ )  > (2zr/3)-~12 I dcQ exp[-/3@/V(r + Q)/~b) - �89 p2~b) 
+ �89 pqj)2] (2) 

Here ~b(r) is an arbitrary, normalized, spatially localized state, which serves 
to generate a coherent-state-type representation. 2 The index E refers to the 
space dimensionality. 

The random field V(r) may be expanded in an arbitrary orthonormal 
basis ~bm(r) 

V(r) = ~ ~m~m(r) (3) 
m = 0  

The assumption of a Gaussian random potential means that the average of 
a physical quantity such as Z is given by the functional average: 

(Z)  = f 3V(r)Zexp[-�89 f f V(r)W-~(r- rl)V(r 1) d~r d~r 1] (4) 

with 
(V(r)V(rl)) = W(r - r 1) (5) 

In particular, for Gaussian white noise in one dimension we have 

( Z )  = f  Z[exp - ( ~  ~2m]]2~,]J mI~ ~,V/~rd~m (6) 

(V(r)V(rl)) = y 8(r - r x) (7) 

2 This type of lower bound, based on coherent states, was used for earlier spin systems. (~a) 
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where 7 measures the strength of the noise. We use the completeness of the 
functions era(r) to transform the Luttinger principle to 

(Z) /L  > (2~r/3)-1/2 exp (-�89 p24J) + �89 f ~b ~ dr) (8) 

where L is the length of the container. The function r is at our disposal 
(for each value of/3) to maximize the value of the exponent. For one- 
dimensional white noise the exact result for ~b(r) is 

~b(r) = (2a) -If~ sech(r/a), a = 21fi7 (9) 

This yields 

(Z) /L  > (2zrfl)- 1/2 exp(72fla/24) (10) 

One can do this calculation in two steps. First introduce a family of 
normalized functions ~(r) = a- 1/2~bo(r/a). Then the variational principle leads 
to 

f ,l, op2r (11) 

The choice of  an oscillator function 4,0 = ~'-t14 e x p ( - r  2/2) leads to a slightly 
inferior bound where 24 is replaced by 8zr, i.e., an error of 5~o in the coefficient 
of the exponential. 

The Luttinger bound holds for all/3. The density of states in the low- 
energy tail is obtained by a saddle point approximation to the inverse Laplace 
transform. The saddle point is located at/30 = (81E])112/7. It leads to a limiting 
density of states proportional to 

-112 [ 4V2 [E1312) El 

This can be compared with the exact result 

~r~ IEl exp - IEI 3t~ (12) 

The coefficient of the dominant exponential term is exact, but the prefactor 
has a different energy dependence, We will discuss the finer details of the 
low-energy tail later. 

In the high-temperature region the Luttinger bound is poor. It describes 
the effect of the mean potential on the electron but not the perturbation- 
theoretic corrections. The exponential actually has a fl312 dependence rather 
than/33. This is most easily obtained in the path integral formulation, to 
which we now turn. 
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2. PATH I N T E G R A L  F O R M  OF P A R T I T I O N  F U N C T I O N  

The partition function for a particle of unit mass moving in a potential 
V(r) is given by the path integraP zz~ 

z=  fd ro f oe  r(u) (13) 

where the paths r(u) start and end at a point r0. The final integration d~ro 
goes over the region occupied by the system. The action is 

5" = �89 i'2(u) du + V(r(u)) du (14) 

For a Gaussian random process the averaged partition function is 

<Z> = f d ro (15) 

with 

= �89  - 1 ~ (  B W(r(u) - S .j i,2(u) du r(u')) du du' 
' ,I0 ~ 0  

The ease with which an exact result is obtained for the averaged partition 
function is one of the most attractive and powerful features of path integral 
methods. The difficulties are of course transferred to the evaluation of a 
functional integral involving a two-time action. This functional is simpler 
than the one that enters in the polaron problem, where W also depends 
explicitly on the difference u - u'. This arises physically from the inertial 
lag of the phonon response. The functional is also simpler than the one found 
in the random impurity problem treated by Edwards and Gulyaev, ~ta~ Jones 
and Lukes, (I4~ Friedberg and Luttinger, (9~ Freed, ~1~ and others. The above 
functional arises as the limit of high density and weak scatterers. 

Nevertheless, as emphasized by Freed, if there are universal features of 
the random impurity problem, they will appear in the study of Eq. (15). 
In addition, there are exact results known for one dimension ~1'2~ and approx- 
imate treatments (a,r of the functional integral that yield exact results for the 
low-energy tails in the density of states. Thus, a thorough treatment of the 
Gaussian noise problem is a good testing ground for general approximation 
schemes. 

A large number of papers treat the two-time action by using Feynman's 
variation principle. For each point ro we have the upper bound 

fo e-S~r(u) > fro e-S~r(u) exp(<S- S)so,~o) (16) 

with 

<S - So)so,~o = f ( S -  So) e-So ~r(u) / f  e-So ~r(u ') 
o o 
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S is some real time trial action, with parameters or functional forms chosen 
to optimize the bound. Jones and Lukes and Friedberg and Luttinger note 
that one can take this as the starting point of a complete theory in terms of 
cumulants. The exponent becomes 

( S -  So> + (1/2!)[((S - SO)~} - (S  - SO>21 +-.-. 

With this approach attention shifts to a choice of So, which should embody 
as much of the physics of S as possible, but for which the functional averages 
can be performed. 

The simplest choice for So is the free particle action for which 

r e-So ~r(u) = (2~r/3) -'12 (17) 
o 

We also have the formula 

~expf;f(t)r(t)dt~oro = exp(+P)  

fo f;f? P = + 2  f(u) d .  - f ( u )  du dt~ f(t~) at~ (18) 

+~2 f(u)u du f dtl f(t2) dt2 

Let 

A = �89 Ve(r(u) - r(u')) du du' 

= �89 f d~k W(k) f f  f f  eikrTm-rm~ dt ds (19) 

Withf(u)  = ik[8(u - t) - 8(u - s)], we find 

(A} = �89 W(k) d~k e x p [ -  �89 - ~) ]  d r (20) 

For Gaussian white noise W(k) = y and the variation principle leads 
to the one-dimensional bound 

(Z)/L > (2zrfl) -1/2 exp[�89 ] (21) 

This perturbation-theoretic type of  bound is superior to the Luttinger 
form at high temperatures but inferior at low temperatures, where it fails to 
take into account the fluctuations in the random potential that lead to deep 
traps. One can proceed to a more systematic theory by using a cumulant 
expansion. The result of  calculating the second cumulant is a term in the 
exponent of order fla, leading to small modifications at high temperatures, 
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but exceeding the first term at low temperatures, so that the cumulant series 
is then useless. We lose the variational bound, but do generate the perturba- 
tion expansion at high temperaturesJ TM 

The calculation of the terms of the perturbation expansion is straight- 
forward. We have 

(A") = (1/2")(2zr)-E"ff W ( k l ) W ( k , ) d ~ k l  ... d~k~ 

with 

f ( u )  = i ~ k~[3(u - h) - 3(u - s,)] (22) 
4 = 1  

The functional average leads to a quadratic form in the k~. Dimensional 
analysis leads immediately to the/33 result for (A ~) - (A)L 

The next idea is to choose an So that represents a particle moving in a 
potential localized about ro (the starting point of a path). This idea has been 
developed by Friedberg and Luttinger for the Edwards-Gulyaev functional. 
The potential will be temperature dependent, so that at high temperatures it 
can be weakened to yield the perturbation result. However, there is an 
important difficulty inherent in this approach, which we now discuss, We have 

So = �89 i'2(u) du + V(r(u))  du (23) 

In the Feynman approximation we must evaluate j" e-So Nr(u) ,  (A ) so ,  and 
([.o ~ V(r(u)) du)so. The last two quantities involve functional integrals for a 
particle in a potential with a superimposed uniform electric field that acts 
impulsively. It is not easy to handle over the entire temperature range. How- 
ever, the main features of the theory can be ascertained by using a trial 
potential of the harmonic oscillator form 

V(r)  = �89 - ro) 2 (24) 

The path integral form immediately gives the factor L '  and we can take 
ro = 0. Using well-known formulas for the oscillator, a2) we have for white 
noise in one dimension 

( Z ) / L  > (o~/2~r sinh oJfl) 1/2 exp(A) exp(B) (25) 

( B )  = �89 2 r2(u) du = �88 coth(cofl) - �88 (26) 

We will compute (A) shortly. At low temperatures it takes the limiting form 

(A) ---> -~fl2(oJ/2~r)~/2, wfl --> oo (27) 
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The frequency c9(/3) can be chosen to optimize the bound. In the limit of low 
temperatures we find 

= (fi=/2~r)y e (28) 

( Z ) /L -->. ( ~o/rr) 1/2 exp(flay2/8~r) (29) 

The prefactor differs from the Luttinger result and leads to a density of 
states proportional to [El ~4, which is better, but not correct (cf. Section 5). 

To calculate (A) over the entire temperature range we use results from 
the forced harmonic oscillator 

( e X P  foef(u)r(u) dU>no = exP[ �89  ~(u)f(u) du] 

with 

fo ; f(u)~(u) du = - f(u) du - -  + sinh(~ou) f(u) du 
o ~ oJ s i n h  oJfl 

fo G(u) = sinh[~o(u - u')l f(u'  ) du' 

Withf(u)  = ik[8(u - t) - 8(u - s)], we have 

(A) = �89 dt ds [F(t, s)] -112 

F(t, s) = sinh[wfl(t - s)] 

+ 4  sinh2(cofl s 2 

The low-temperature limit leads to the results quoted earlier. 
temperatures (0~fi << 1) we find the expansion 

with a negative coefficient for the (~ofi) 2 term. In the same region 

sinh m]?] - - - ~ - ~  ] ~ 12 

Thus the high-temperature limit of the partition function is 

( Z ) / L  ---> (2rrfi)- 112 exp[�89189 
x e x p [ -  (oofi)2yflal2(�89 - ~r)] 

(30) 

(30 

(32) 

t cosh[o~j3(t + �89 cosh{oJfl[1 - (t + �89 (33) 
sinh o~1~ / 

At high 

(34) 

(35) 

(36) 
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In the high-temperature limit any nonzero choice of the oscillator frequency 
leads to a worse result than the perturbation choice ~o = 0. We thus have 

the following conclusion. At low temperatures one can choose the oscillator 
frequency to obtain the exponential low-energy tail (with the oscillator 
coefficient 8~r). There will be a critical temperature above which one must 
shift to zero frequency and use the perturbation cumulant expansion. As a 
result, some derivative of the partition function will be discontinuous. This 
behavior is entirely analogous to that in the polaron problem. A switch from 
a delocalized to a localized potential occurs at a critical coupling constant. 
While we know of no proof that some type of discontinuity cannot occur, 
it is here clearly an artifact of the approximation under discussion. The 
Feynman two-time quadratic trial action yields a smooth transition and a 
lower energy at all coupling constants. The main defect of the bound oscillator 
model is the failure to respect the translational invariance of the original 
action fully. This is seen in polaron theory by noting the form of the canonical 
transformations that yield results identical to those based on a localized 
single-time trial action with potential centered about the starting point. (16a7) 
If  there are discontinuities in Z(]~) or its temperature derivatives, it would 
require far more refined considerations than any heretofore given to demon- 
strate that fact. 

One can of course use a potential that gives more accurate results than 
the oscillator potential in the low-temperature limit, just as in our discussion 
of the Luttinger principle. However, the resulting theory is expected to have 
the same defect as one goes to the high-temperature limit. It is interesting 
that even at low temperatures the prefactor has an incorrect/3 dependence. 
This leads to an incorrect energy dependence of the prefactor in the density 
of  states. The theory based on a two-time quadratic trial action corrects this. 
In addition, surprisingly but gratifyingly, the formulas are simpler than for 
the case of bound potential. Hence we do not pursue the discussion of a 
systematic cumulant expansion. This has been analyzed by Friedberg and 
Luttinger (9~ for the more difficult Edwards-Gulyaev action, with special 
emphasis on the low-temperature limit. 

3. F E Y N M A N  A P P R O X I M A T I O N  W I T H  A 
T W O - T I M E  ACTION 

The present work is based on a quadratic two-time action 

f: 1 ~ f2 du + du du' [r(u) - r(u')] z (37) So = 
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This has the same translational invariance as S. We may write 

So = S~o - (r r(u) du 
(38) 

fo S~o= l i2(u) du + �89 2 r2(u) du 

Our starting point is a simple formula for the path integral fro e-So 9r(u).  

Because of the translation-invariant form of So, we may take ro = 0. We use 
the parameteric representation 

exp((o'~/25)Iff r(u) du] ~} 

Then 

f (exp So) ~r(u) 
t ~  

= / (exp - SHo) ~r(u)(2~) - ~/2 
L /  

• (40) 

The theory of the forced harmonic oscillator leads to 

f ( e x p  - S a o )  ~r(u) = (w/2~r sinh w/3) ~/2 (41) 

~ e x p [ ~ f f r ( u ) d u ] L  ~ = e x p ( - - ~ [ 1  tanh(oJfl/2)]\~ ] )  (42) 

This yields the fundamental result 

f~o e-S~ ~r(u)= [ 1 co~/2 ]~ (2@) 1/2 s i n h ~ / 2 ) ]  (43) 

We will see that this factor already yields a different (and correct) prefactor 
for the density of states than for the theories discussed earlier. Let us write 

S o - S = A + B  

A = W(r(u) - r(u')) du du' (44) 

B = (o~2/4~) du du' Jr(u) - r(u')] 2 

The variational principle leads to 

Z ( 1 r ]~e<A>e<~> 
T ~> \(2~r/~) ~2 sinh(cofl/2)] 

(45) 
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where 

(A)  = ( f  e -So~r ) - l  f Ae-So ~r  (46) 

The  average of  B with the act ion So is mos t  easily evaluated by making  
the replacement  co 2 ~ co2A Then  

( B ) = - ( a / o A ) [ l n f e - S o ~ r ( u ) ]  (47) 

evaluated a t  ~ = 1 We find 

= -2"A + _ _  ~-~ coth  (48) 

To  calculate (A)so,  we write 

( A )  = �89 ~ W(k) d~(k) 
oO 

• d,d, (49) 

w i t h f ( u )  = ik[3(u - t) - 3(u - s ) ]  The  fo rmula  for  the average contained 
in ( A )  follows f r o m  the s tandard  analysis o f  Gauss ian  functional  in tegra ls  
I t  is 

~exp :f f(u)r(u) du)so = exp[�89 ff ,(u)f(u) du] (50) 

where ~(u) is a solution of  

:o' - (w2//3) [~(u) - ~(u')] du' = - f (u) ,  ~(0) = ~(/3) = 0 (51) 

T o  exhibit  the solut ion we define 

G(u) = {sinh[w(u - u')]}f(u') du' 

C = �89 G(u) du - [cosh(�89 (52) 

D = -�89189 G(u) du + �89 

The  solution is then 

-co,~(u) = G(u) + C sinh ~ou + D(cosh oJu - 1) (53) 

With  f(u) as noted above  

-- w ~(u)f(u) du 

= + k ~ ( + s i n h [ w ( t  - s)] + [cosh(�89 - cosh w(t - s)]} (54) 
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Note that this result depends only on the time difference t -  s, in 
contrast to the bound oscillator formula, which also involves t + s. We now 
measure t and s in units of fi and introduce 

Then 

A(~e) = tanh(�89 ) sinh(oJfl~:) - cosh(~ofs e) 

with 

c~ (~ W(k(w tanh _~) 1/2 ) 32 (~o tanh d~k 
(A)s 2(27r) ~ -2-] J~o 

(55) 

fo ~ k s • exp 2[1 + ~(~)] d~ (56) 

Let us now specialize to the case of one-dimensional white noise. Then 

(57) (A)so = �89 

r(oofl) = tanh(wfl/2) lju [1 + A(~:)] -1;2 d~ 

The quantity F can be reduced to a known integral by elementary 
transformations. Let 

-= {2/[1 + coth(�89 1/2 (58) 
Then, 

Y = (2/wfl)t~K(t 0 (59) 

where K(t0 is the complete elliptic integral. (8) Our final answer for the one- 
dimensional white noise case is 

~'3 ,o 1-'(o~3) (60) 
L- /> (2~/3) 1/2 sinh(~ofl/2) exp -~- coth 7 - exp 

4. L O W -  A N D  H I G H - T E M P E R A T U R E  L I M I T S  

In this section we examine the low- and high-temperature limits of the 
formula derived at the end of the last section. 

We first examine the low-temperature limit. The behavior of the elliptic 
integral for tz near unity is 

K(t0 = ln(4e ~B/2) + O(oJfle-~~ (61) 

Then 

I ~ ~ 1 + [(2 In 4)/oJfl] + O(e-o~e) (62) 
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The corrections involve exponentials in ~oj3. We find (Z)/L in the approxima- 
tion that all exponentials e-~a in the exponential are to be discarded: 

(Z) + oJ[3 ( _~ 7/32~o ) 7/32~/~1n 4 1  
Z ~ exp - + 2(2~r)~/-------- ~ exp (2rr)~/2 o43 e x p - ~  (63) 

For o43 >> 1 we can choose oa(/3) to maximize the first exponential. This leads 
again to ~o = fi272/2rr and to a partition function 

( Z )  --~ 1 7 5 fi3 1 y2fia 
L (2~r/3)1/----- ~ ~ 4 exp -ft, exp 8~r (64) 

The dominant  exponent is the same as the Luttinger value with an oscillator. 
However, the prefactor now has a different t3 dependence and leads to the 
correct [E I dependence of the density of states in the low-energy tail. The 
absolute value of the coefficient of [El differs from the exact result by 36070 . 

In the high-temperature region, we wish to determine whether there are 
choices of oa(/3) that  are nonzero and lead to a superior bound to the ~ = 0 
case. We first examine the expansions of all terms other than F. For ~o3 < 1, 

sinh(o~3/2 ) 1 
(~ ( - ~ )  4 1 + l n  o43/2 -+ (_~)2  . _  (_~)4 1 (65) ( B )  - +  - -  - 

T h u s  

(Z)L "--> (2~'/3)-~/2 exp[-(- - -~)4 1~-~] exp~[Tfl2"v~wP) 

Using the expansion 

P = ~--3fioa 1 + ~ t z +  /z2+ ... ~r = ~  1 + - -  

(66) 

1 
+ O(~/3) +.. .[  

(67) 
we have 

~ e x p [ T  ( ; )  1/2] expCF) (68) 

The first two factors yield the zero-frequency estimate. Here 

F = 7/3312[~ lt2(~ 4 (_~)~ 1 18---'0 (69) 

It is made a maximum with 

~o3 = [45v(w/2)11212/7/33/7 (70) 

F is positive with the second term equal to 1/8 of the first term. 
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We note that co/3-+ 0 weakly as/3--+ 0, so that the expansion is con- 
sistent. But co itself increases as/3 ---> 0 as/3-4/7. Thus the optimum co(/3) has a 
minimum at some intermediate value of/3. Note that the dependence of  Z 
on y is not that of higher order perturbation theory. That theory depends 
on letting y ~ 0 before letting/3 -+ 0. The preceding calculation reverses that 
order. 

We have the freedom to choose co(fi) in a less than optimal way in order 
to have a tractable function Z(/3). I f  we take the low-temperature form co -- 
fi272/27r to hold at all temperatures, Z(fi)  becomes a function of the single 
variable (fi372), apart from the factor (27r/3)-l/L Furthermore, the bound 
improves the co = 0 result at high temperatures, i.e., includes part of the next 
order perturbation correction. Thus we have a simple expression, which makes 
a smooth transition between low and high temperatures, including the next 
to leading terms at both ends. However, it is not clear how accurate such a 
theory is in the intermediate domain. 

. D E N S I T Y  OF S T A T E S  IN T H E  L O W - E N E R G Y  TAIL 

Since the density of states has a low-energy tail that extends to E --+ - co, 
we use the two-sided Laplace transform 

Z(/3) = ~_+ f e-~En(E) ~ 

(71) 
l c+i~o 

; Z(/3) ee E n ( E ) =  ~ l I )  ' c > O 
,J C i -  oa  

We have found Z(/3) for real, positive/3, and the expression represents the 
analytic continuation for complex/3 with a positive, real part. To study low- 
energy tails we must evaluate 

f 
C + i m  

n(E)  = (1/2~ri)Qb /3b exp(_/3lEi) exp(/3a/3a2) d/3 (72) 
, J C - i o o  

Here ~2 = 8/72 for the correct asymptotic limit and 8~/3Z ~ in the oscillator 
approximation, b and Q~ vary according to the model. The exponent h(/3) = 
/33/3~2 - N E [  has a minimum on the positive, real axis at rio = ~[EI 1/2 

We perform the integral along a line parallel to the imaginary axis, 
passing through/3o. Then 

n(E)  = (1/21r)Ob~+ lZ2[E[(b/2-1/%r 
x [exp(-  (2/3),~IE[8/glJ (73) 

where 

1 ( + ~  _z2) /exp  - i z  a \ /  . zt~ ]b J = - ~  j _  ~ dz  (exp \ (74) 
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The main  contr ibut ion comes f rom z < 1 as ]El --+ 0% so that  J - +  1. 
In  the Lutt inger  approx imat ion  

b = - �89 Qb = (2r 1,2, a2 = 8/y2 

In  the bound  oscillator approx imat ion  

b = 1, Qb = y(2~r)-1,2, c~2 = 8rr/3y2 

The  variat ional  theory with the two-t ime quadrat ic  act ion has 

b = 5/2, 

I t  leads to the expression 

n(E) --+ 1 
7, lel 

Qb = 4Y2/(2Tr) 3j2, ~2 = 87r/3y2 

(75) 

(76) 

(77) 

4 41r1123_a12 exp ~ (78) 
7r  

We will see in the next section tha t  considerat ion of  the higher order cumu- 
lants drives a 2 to the exact value and changes Qb. I t  leaves the index b, which 
is already exact, unaltered. At  the present  state the coefficient in Eq. (78) is 
to be compared  with the exact 4fir, so tha t  there is a 36~ error.  

6. C U M U L A N T  D E V E L O P M E N T  

The second cumulant  is 

(72 = ((A + B) 2 > -  (A + B> 2 
= <A 2> - <A> 2 + <B 2> - <B> 2 + 2[<AB) - <A><B>] 

and the contr ibut ion to the exponent  is (1/2!)C2. 
The easiest quant i ty  to evaluate is 

<B ~> - <U>2 = - ~  <B> 

[ o , 3 1  ..[og~/-X\ (~o3) ~ ( ~ _ a _ )  l ]  
= E[-~- ~ c o m ~ )  + ~ csch 2 - ~-~ 

evaluated at A = 1. 
To  evaluate the <AB> term, replace o) by o~x/A in <A>. Then 

<AB> - <A><B> = -(818A)<A) 

In  the one-dimensional  white noise p rob lem at low temperatures  

F(fl~oV'A ) --> 1 + [(2 In 4)/~ofl~/A ] + exponential  terms 

<AB> - <A><B> = -(8tSA)[�89 

(79) 

(8o) 

(81) 

(82) 

(83) 
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with 

Then,  

The expression for  (A s ) follows f rom the earlier type of  considerat ion:  

(A~) = k(2~)-~ f f d~k~ d~k2 W(lq)W(k~) 

x fon ... fo~dh ... ds~ exp[�89 fo~ r du] (84) 

f(u) = ikl[3(u - tl) - ~(u - sz)] + ik~[3(u - t2) - 3(u - s2)] 

�89 f(u)r du 
= -(1/20a)[tanh(�89 + D ( q -  sl)] 

+ k22[1 + D(t2 - s2)] - klk2D12} (85) 

D(]tl  - sl ]) = [tanh(�89 sinh(wltl - s~ ]) - cosh(o~]tl - s~ ]) 
(86) 

D12 = D([q - t2i) + D([s~ - s2]) - D(q - s2[) - D([t2 - s~[) 

For  one-dimensional  Gauss ian  white noise 

, 2  1 o~fi\ 1 
(A2) = 4-~fl'~ (tanhW) fo f  dh ds, dt2 ds2 

x [1 + A(t, - sl)][1 + A(t2 - s2)] - (87) 

The  fourfold integrat ion actually depends on three independent  differences, 
but  is still very complicated.  I t  is, however,  easy to find results sufficiently 
accurate  to treat  the low-temperature  limit. We examine the expansion in 
powers  of  

y = A~U[1 + A(h  - sl)][1 + A(t2 - s2)] (88) 

We have 

(A 2) - ( A )  2 = 4 .2~rf i% tanh 

f f f f  dh ds~ dt2 ds2 
• [1 + A(h  - sl)]a/2[1 + A(t2 - s2)] 1/2 

3 y~ 
x (-~ + 8~- ~ + . . . )  (89) 

The  key point  is that  the leading term as aJfi--> oo comes f rom terms with 
only one t ime difference, e.g., A2(tl - t2), A~(t~ - t=), etc. Thus we may  
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neglect all of the denominators. The first power o fy  contributes four identical 
terms, as do all the higher powers. Thus we have 

72/3%~ (1 f~ Ae(~ r d~: 83 f~ A~4 z d~ (A z) - (A)  2 ---> ~ 4 + 4 +--._ (90) 

asymptotically 

fo f • = 1/8~o, zx 4 d~ = 1/(28~o) (91) 

The leading term in (A 2) - (A) 2 cancels the other two terms in the second 
cumulant. Thus the contribution to the exponent is 

1 728s(3 ) 
~. C2 = ~ 6-4 + "'" (92) 

The correction to the Feynman approximation is (1/Tr)[1 + (3/64) +...], 
which is almost the exact result of 1/3. Thus the main effect of (72 is to 
correct the coefficient of the dominant term. The energy dependence of the 
prefactor is unaffected since it corresponds to terms of order ln(w8) in an 
exponential and no such terms occur in the expansion of C2. 

To complete the discussion, we estimate the effect of the second cumulant 
correction on the numerical value of the prefactor. This arises from the non- 
exponential terms in the second cumulant. There is no contribution from 
(AB) - (A) (B)  and that from �89 2) - (B)  2} is -�88 

The dominant contribution comes from the first term, linear in y (cf. 
the appendix for the treatment of the integrals). We find, accurate to order 
(o4~) -~, 

f A~2(1 + A1)-a/2(1 + A2)-a12 dsl dt2 ds2 dtl 

4 16 (1 - 2In 2) (93) 

and 

(A 2) - (A) 2 8372 8272 1 (1 - 2 In 2) (94) 
2 = 32----g + co 8rr 

The numerical value of the prefactor becomes (4/Tr)(~r/3)l12(4/3)(1/~/2), 
since the contribution of the second cumulant is a factor �89 This is too 
low by 3 ~o- 

The term in y2 can be computed, using 

f 2 44 1 A~2 dtl dsl dt2 ds2 = ~ + -~ oJ28----- 2 (95) 
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It contributes an additional factor exp[11/(16)2]. The total result is a prefactor 
accurate to 1 ~ .  

We note that in the high-temperature region, the co = 0 limit already 
includes all terms of order/337, 2 and a suitable co(/3) improves the accuracy. 

The third-order cumulant contributes (1/3!)C3 to the exponential 

Ca = ~(A + B) 3 ) -  ~A + B) ~ - 3~A + B)(~A + B)  2 -  ~A + B)  ~) (96) 

All of the terms except for ~A 3) - (A) a may be computed from cited 
formulas by replacing co by ~o~/A and differentiating with respect to t. The 
structure of (A a) is similar to (10) and is easily written down. We have not 
calculated the corrections in the low-temperature limit, since they appear to 
be very small. 

7. D I S C U S S I O N  

The quantum mechanical theory of an electron subjected to Gaussian 
noise is the simplest example of a set of problems covering a wide range of 
phenomena. More complicated cases include the behavior of an electron 
interacting with randomly placed scatterers or with lattice vibrations and 
certain polymer configuration problems. The order of difficulty is transparent 
in the path integral formalism, where one inspects the action functional. All 
of these problems have to cope with deep traps or bound states in a manner 
that does justice to the overall translational invariance. In addition, one 
wants an accurate representation of the higher energy parts of the spectrum 
where the traps or bound states are not important. 

In most of these cases there exists the outlines of a profound systematic 
treatment of the low-energy states. For the Gaussian noise problem it is the 
theories of Halperin and Lax, Zittarz and Langer, and Edwards and Freed. 
Methods were developed to deal with isolated deep traps, with additional 
small fluctuations, in a manifestly translation-invariant form. The theory 
computes not only the dominant exponential low-energy tail in the density 
of  states, but also the energy dependence and constants in the "prefactors."  
These theories also hold in three dimensions and for nonwhite noise. They can 
be checked for accuracy by comparing with the exact one-dimensional results. 

For the polaron there is no exact theory even in one dimension. The 
corresponding theory is the strong coupling adiabatic theory of Bogolyubov 
and TyablikovJ ~9~ This approach was developed in Hamiltonian form with 
auxiliary variables a long time ago. Recently it has been revived, expressed 
in somewhat varying forms, and studied more deeplyJ 2~ The same basic 
ideas have been examined in the relativistic quantum field theory of "ex- 
tended" objects, which has been studied from many points of view. (22~ This 
includes work within the path integral formalism. (23~ This theory gives an 
account of the low-lying excitation structure and of their zero-point energy 
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contributions to the ground state. For example, in the partition function and 
density of states of the polaron, they become a theory of the "prefactor." 
The dominant exponential is already given by a primitive, symmetry-breaking 
Hartree approximation. However, there has been no successful linkage of the 
strong coupling and weak coupling limits, other than variational interpolation 
schemes for a few quantities such as the ground-state energy and effective 
mass. These schemes, which use conventional Hamiltonian methods, do not 
allow us to see how the rich structure of the strong coupling limit disappears 
as one goes to weaker coupling strengths. 

The most successful overall theory of the polaron is the path integral 
treatment of Feynman based on a two-time quadratic trial action. It has been 
applied to a host of problems, including electrical, optical, magnetic, and 
thermal properties of polarons and excitons. (2~ It gives satisfactory results 
for these problems over the entire range of coupling constants. 

There are, however, some things that are left out of the Feynman treat- 
ment. In particular, it does not describe the finer details of the systematic 
adiabatic theory in the strong coupling limit. We do not refer to the limitations 
of the oscillator approximation in estimating the dominant term in the 
ground-state energy. This is a relatively minor matter and is certainly remedied 
in a cumulant extension of the theory. More important is the need to improve 
the Feynman approach to describe the low-lying excited states, including the 
bound photon polaron states. Work has been done with quadratic actions 
with a general explicit time delay, rather than the simple exponential delay 
of the original theory. But the connection with the strong coupling theory 
is not at all clear and merits further study. 

After observing that the Zittarz-Langer theory of Gaussian noise is on 
a par with strong coupling polaron theory, we thought it worthwhile to 
examine the associated two-time quadratic action approximation. Since the 
problem is easier than the polaron problem, one can obtain explicit results 
and drive the calculations to higher orders, using the cumulant expansion. 
We have verified that one does indeed pick up the finer features of the deep 
trap theory. This is satisfying, since the path integral treatment also describes 
the high-temperature limit of the partition function in a very satisfactory 
manner. However, the treatment does not really incorporate the ideas of the 
deep trap theory. This merits further thought. We would expect to find the 
same sort of thing if the polaron were treated with a cumulant development 
starting from the Feynman approximation. 

It should be noted that the type of trial action used here has been 
discussed by Abram and Edwards (25~ and Bezak (26~ for random impurity prob- 
lems. a However, the action that they used resulted from a long-wavelength 

3 See Note Added in Proof on page 286. 
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expansion of the original action. If  one does this for the polaron problem, 
one does not obtain the correct strong coupling limit. Likewise here one 
cannot describe the effects of deep traps properly. This type of theory only 
yields the factor called X e-S~ ~ r ( u )  in the present discussion. It is essential to 
use the variational principle that includes the contributions of terms (A)  and 
(B)  earlier in this paper. 

We hope to apply the results of  the present work to more difficult prob- 
lems involving random potentials similar to those of polaron theory men- 
tioned above, which have been analyzed with Feynman's approach. 

A P P E N D I X  

We describe techniques for the evaluation of the integrals occurring in 
the cumulants. They are particularly useful in the limit of  low temperatures, 
where one neglects exponentials e -~B. 

The simplest integral is 

A(h - s O  dh ds~ = (1 - e - ~ 0  ( e - ~  + e~ ~ - - -  

The integral is symbolized by a line between the points t~ and sl,  

t~ s~ 

We also have 

2 
og 

(A.1) 

f f  fo 1 Am(tl - sl)  d h  dsl ~ (2/mo43)(- 1) ~ (A.2) 

Increasing the number of lines between two points does not change the power 
of o2fl. 

Consider next the integrals occurring in the evaluation of 

A~2 

= A~(t~ - t~) + ~ ( s ~  - s~) + A~(t~ - s~) + A~(t~ - s 0  
+ 2A(t~ - t2)A(s~ - s2) + 2A(h - se)A(t2 - s~) 
- 2[A(q - t2)A(h - s2) + A(q - 6)A(te - s~) + A(s~ - s2)A(q - se) 
+ A(sl - s2)A(t2 - sl)] (A.3) 

Mark four points and denote the first four terms by 
2 

S 1 �9 . S 2 

tz t2 " 

The fourfold integration is symmetric, so all integrals yield the same 
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value. The total contribution is (4/o43). Next consider the diagrams corre- 
sponding to the second line of (A.3): 

(B) ~ (A.5) 
These are disconnected and equivalent. Each one contributes (2/coil) 2 and we 
must supply the factor 2 from the expansion ofA~2. So the total contribution 
is 2 x 2 x (2flo/3)L 

The diagrams corresponding to the third line are 

(C) / ~ f ~ (A.6) 

We examine the first of the four equivalent diagrams. It corresponds to 

f f dt~ dSl folA(q - t2) dt~ f2  A(t~ - s2) ds2 (A.7) 

We note that 

]A(h  - s2) ds2 = -(2/~ofi)(1 - e -~'B) -+ -2/~ofl (A.8) 

which is independent of tl. So, any line with a free end may be detached. 
Supplying the factor ( - 2 )  from the expansion of A,22, the total contribution 
is ( - 2 ) ( 4 ) ( -  2/~o/~) 2 = - 32/o~2fiL 

We then find 

where dr ~- dtl dsl dt2 ds~. 
Consider next the computation 

4 16 
~o5 o,25 = 

(A.9) 

of fk(t l  - sl) A~2dr. This adds a 
vertical line on the left of each of the diagrams. Thus the first A diagram 
becomes 

(A') [ _ _  

The B diagrams become 

(B') [ - -  

z (A.m) 

[• (A.11) 

Again the free-ending lines may be detached and each diagram contributes 
(-2/co/3) 3. The C diagrams become 

The first and second have the same contribution as the B' diagrams. 
The two triangle diagrams require a separate calculation. The first one 
corresponds to 

E-- f f f fA( t~--s~)A( t~-- t2)A(s~--  t2) d'r (A.13) 
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The substructure 

f ~ A(s~ - t2)A(h - t2) dt~ 

--> [ e x p ( - 0 , f i [ h -  s~l)](+ + It1- s,[) 

+ {exp[0,5([h - sll)] exp(-0,5)} 1 + ~ - [h - sl] (A.14) 

where we have dropped terms of order e -~ Taking the integral over half 
the range and doubling the result, we need only compute the first half. Hence 

E-->-2 f'Z2e-~176176176 + ~) dr--->-(3/2)(~o'fi2)-i 
�9 , o  ~ ,0 , f l  

We see that in computing 

f Al"(h - sl)A(h - t2)A(s~ - t2)dr 

the first factor is replaced by exp(-n0, f ) .  So 

E~ = -2(0,8) -2 + (n q2 1)2 

(A.15) 

(A. 16) 

We next consider f f f f A(h - sl)A(t2 - s2)A~2 dr and show that it is 
of  order (0,5) -a. The A diagrams become 

2 

I I I LY1 )'q 
The extra free index line factors and each diagram is of  order (0,5)-a. We 
are neglecting terms of this order. The B diagrams become 

It is easily shown that both of these, which are connected diagrams involving 
all four points, are of order (~p)-a. 

Finally the C' diagrams are triangles [(0,5)- 2] with an extra end and are 
thus of order (0,5)-L 

To order (0,5) -2 we may write 

f (1 + A~)-a/2(1 + A2)-a/%~2 dr  
t ~  t , b  

= 2 | A~=[(1 + k l )  -a'2 - 11 dr + | k~2 dr (A. 19) 
d J 
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f 4 16 In 2 
A~2(1 + Az) -a,2 dr = o4 3 co2/3z (A.20) 

f k~=[(m + kz) -a,= - 11 dr = 8(o43)-=(2 - 2 In 2) (A.21) 

Let us now examine the terms contained inf  k~2 dr. We have established 
that the order of 043 does not depend on the number of lines between two 
points. In addition, connected diagrams involving all four points are of order 
(o43)-a. A diagram that contributes to order (coil)- * is " , with three others 
of the same type. The (0)/3)- = diagrams are the disconnected diagrams 

2. 3 

We also have contributions of order (~ofl)-2 from 

2 

Y Y 
2 3 3 

We find 

3 3 

7 (A.23) 

f 2 44 1 (A.24) A,'~ dr = ~ + -5 (,o~)-----~ 

The same type of diagrams contribute to f A~2 dr, for n > 2. 
We note that terms of type f A1A~2 dr involve an extra vertical line. So 

there are contributions from the four diagrams of the form 

I 4 
and also from connected diagrams of the form 

M, 
3 

We note that f 2x~2(1 + A1)-a/2 dr had an (o43) -2 term that was In 2 times 
that from the first term in the expansion, viz., f A~2 d~-. We expect a similar 
modification when we compute f A~2(I + A1)-s/2 dr. We do not compute it 
since the f A~2 dr contribution to the prefactor is only a few percent. 

NOTE A D D E D  IN PROOF 

Samathiyakanit (~7~ has used the two-time action as presented in this 
paper and obtained some of the results found in Section 3. However, he then 
discusses topics different from the present paper. 
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